
Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies
Safayet Hossain , Master of Science in Cybersecurity, Washington University of Science and Technology, USA Md Tarake Siddique , Master of Science in Information Technology, Washington University of Science and Technology, USA Md Monir Hosen , MS in Business Analytics, St. Francis college, USA Sakib Salam Jamee , Department of Management Information Systems, University of Pittsburgh, PA, USA Sharmin Akter , Department of Information Technology Project Management, St. Francis College Pinky Akter , Master of Science in Information Technology, Washington University of Science and Technology, USA Md Omar Obaid , Department of Business Analytics, California State Polytechnic University Pomona, CA, USA MD Sayem Khan , Master of Science in Project Management, Saint Francis College (SFC), Brooklyn, New York, USAAbstract
In this study, we conducted a comparative analysis of traditional machine learning models and advanced deep learning models for sentiment analysis of consumer feedback, aiming to assess their impact on business strategies. We evaluated the performance of Random Forest, Support Vector Machines (SVM), Naive Bayes, BERT, and GPT models using a comprehensive dataset derived from e-commerce platforms, social media comments, customer surveys, and online forums. Our results demonstrated that while traditional models like Random Forest and SVM achieved decent accuracy, they were outperformed by the large language models, BERT and GPT. BERT achieved the highest accuracy (92.7%), precision (91.3%), recall (94.2%), and F1-score (92.7%), showcasing its exceptional ability to capture contextual relationships in text. GPT also demonstrated strong performance with an accuracy of 91.5%, although slightly lower than BERT. The findings suggest that transformer-based models, particularly BERT, offer significant advantages in processing consumer feedback, enabling businesses to extract more accurate insights for decision-making, customer satisfaction improvement, and marketing optimization. This study emphasizes the importance of adopting deep learning models for sentiment analysis in business contexts while acknowledging the potential limitations related to computational resources. Ultimately, our research highlights the value of sentiment analysis in informing business strategies and enhancing customer engagement.
Keywords
Sentiment analysis, machine learning, deep learning
References
Md Risalat Hossain Ontor, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo, & Ashequr Rahman. (2024). LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS’ PERFORMANCE: A MACHINE LEARNING APPROACH. International Journal of Computer Science & Information System, 9(11), 45–56. https://doi.org/10.55640/ijcsis/Volume09Issue11-05
Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.
Iqbal, A., Ahmed, E., Rahman, A., & Ontor, M. R. H. (2024). ENHANCING FRAUD DETECTION AND ANOMALY DETECTION IN RETAIL BANKING USING GENERATIVE AI AND MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 78-91.
Rahman, M. H., Das, A. C., Shak, M. S., Uddin, M. K., Alam, M. I., Anjum, N., ... & Alam, M. (2024). TRANSFORMING CUSTOMER RETENTION IN FINTECH INDUSTRY THROUGH PREDICTIVE ANALYTICS AND MACHINE LEARNING. The American Journal of Engineering and Technology, 6(10), 150-163.
Chowdhury, M. S., Shak, M. S., Devi, S., Miah, M. R., Al Mamun, A., Ahmed, E., ... & Mozumder, M. S. A. (2024). Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction. The American Journal of Engineering and Technology, 6(09), 6-17.
Bhuiyan, R. J., Akter, S., Uddin, A., Shak, M. S., Islam, M. R., Rishad, S. S. I., ... & Hasan-Or-Rashid, M. (2024). SENTIMENT ANALYSIS OF CUSTOMER FEEDBACK IN THE BANKING SECTOR: A COMPARATIVE STUDY OF MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(10), 54-66.
Mozumder, M. A. S., Mahmud, F., Shak, M. S., Sultana, N., Rodrigues, G. N., Al Rafi, M., ... & Bhuiyan, M. S. M. (2024). Optimizing customer segmentation in the banking sector: a comparative analysis of machine learning algorithms. Journal of Computer Science and Technology Studies, 6(4), 01-07.
Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04
Uddin, M. K., Akter, S., Das, P., Anjum, N., Akter, S., Alam, M., ... & Pervin, T. (2024). MACHINE LEARNING-BASED EARLY DETECTION OF KIDNEY DISEASE: A COMPARATIVE STUDY OF PREDICTION MODELS AND PERFORMANCE EVALUATION. International Journal of Medical Science and Public HealthResearch, 5(12),58-75.
Shak, M. S., Uddin, A., Rahman, M. H., Anjum, N., Al Bony, M. N. V., Alam, M., ... & Pervin, T. (2024). INNOVATIVE MACHINE LEARNING APPROACHES TO FOSTER FINANCIAL INCLUSION IN MICROFINANCE. International Interdisciplinary Business Economics Advancement Journal, 5(11), 6-20.
Naznin, R., Sarkar, M. A. I., Asaduzzaman, M., Akter, S., Mou, S. N., Miah, M. R., ... & Sajal, A. (2024). ENHANCING SMALL BUSINESS MANAGEMENT THROUGH MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS FOR CUSTOMER RETENTION, FINANCIAL FORECASTING, AND INVENTORY OPTIMIZATION. International Interdisciplinary Business Economics Advancement Journal, 5(11), 21-32.
Al Mamun, A., Hossain, M. S., Rishad, S. S. I., Rahman, M. M., Shakil, F., Choudhury, M. Z. M. E., ... & Sultana, S. (2024). MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 63-76.
Miah, J., Khan, R. H., Linkon, A. A., Bhuiyan, M. S., Jewel, R. M., Ayon, E. H., ... & Tanvir Islam, M. (2024). Developing a Deep Learning Methodology to Anticipate the Onset of Diabetic Retinopathy at an Early Stage. In Innovative and Intelligent Digital Technologies; Towards an Increased Efficiency: Volume 1 (pp. 77-91). Cham: Springer Nature Switzerland.
Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.
Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.
Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.
Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Taluckder, M. S., Al Bony, M. N. V., ... & Jui, A. H. (2024). PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY. International Journal of Medical Science and Public Health Research, 5(11), 41-55.
Al Bony, M. N. V., Das, P., Pervin, T., Shak, M. S., Akter, S., Anjum, N., ... & Rahman, M. K. (2024). COMPARATIVE PERFORMANCE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BUSINESS INTELLIGENCE: A STUDY ON CLASSIFICATION AND REGRESSION MODELS. Frontline Marketing, Management and Economics Journal, 4(11), 72-92.
Hasan, M., Kabir, M. F., & Pathan, M. K. M. (2024). PEGylation of Mesoporous Silica Nanoparticles for Drug Delivery Applications. Journal of Chemistry Studies, 3(2), 01-06.
Nguyen, A. T. P., Jewel, R. M., & Akter, A. (2025). Comparative Analysis of Machine Learning Models for Automated Skin Cancer Detection: Advancements in Diagnostic Accuracy and AI Integration. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 15-26.
Nguyen, A. T. P., Shak, M. S., & Al-Imran, M. (2024). ADVANCING EARLY SKIN CANCER DETECTION: A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR MELANOMA DIAGNOSIS USING DERMOSCOPIC IMAGES. International Journal of Medical Science and Public Health Research, 5(12), 119-133.
Phan, H. T. N., & Akter, A. (2025). Predicting the Effectiveness of Laser Therapy in Periodontal Diseases Using Machine Learning Models. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 27-37.
Phan, H. T. N. (2024). EARLY DETECTION OF ORAL DISEASES USING MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS AND DIAGNOSTIC ACCURACY. International Journal of Medical Science and Public Health Research, 5(12), 107-118.
Rishad, S. S. I., Shakil, F., Tisha, S. A., Afrin, S., Hassan, M. M., Choudhury, M. Z. M. E., & Rahman, N. (2025). LEVERAGING AI AND MACHINE LEARNING FOR PREDICTING, DETECTING, AND MITIGATING CYBERSECURITY THREATS: A COMPARATIVE STUDY OF ADVANCED MODELS. American Research Index Library, 6-25.
Uddin, A., Pabel, M. A. H., Alam, M. I., KAMRUZZAMAN, F., Haque, M. S. U., Hosen, M. M., ... & Ghosh, S. K. (2025). Advancing Financial Risk Prediction and Portfolio Optimization Using Machine Learning Techniques. The American Journal of Management and Economics Innovations, 7(01), 5-20.
Ahmed, M. P., Das, A. C., Akter, P., Mou, S. N., Tisha, S. A., Shakil, F., ... & Ahmed, A. (2024). HARNESSING MACHINE LEARNING MODELS FOR ACCURATE CUSTOMER LIFETIME VALUE PREDICTION: A COMPARATIVE STUDY IN MODERN BUSINESS ANALYTICS. American Research Index Library, 06-22.
Nguyen, Q. G., Nguyen, L. H., Hosen, M. M., Rasel, M., Shorna, J. F., Mia, M. S., & Khan, S. I. (2025). Enhancing Credit Risk Management with Machine Learning: A Comparative Study of Predictive Models for Credit Default Prediction. The American Journal of Applied sciences, 7(01), 21-30.
Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Das, A. C., Hosen, M. M., ... & Jui, A. H. (2024). PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY. International Journal of Medical Science and Public Health Research, 5(11), 41-55.
Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing,Management and Economics Journal, 4(12), 66-83.
Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. https://doi.org/10.1016/j.jocs.2010.12.007
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Chevalier, J. A., & Goolsbee, A. (2003). Measuring prices and price competition online: Amazon and Barnes and Noble. Quantitative Marketing and Economics, 1(2), 203-222. https://doi.org/10.1023/A:1023144910099
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. https://arxiv.org/abs/1810.04805
Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. In Proceedings of the European Conference on Machine Learning (pp. 137-142). Springer. https://doi.org/10.1007/BFb0026683
Liu, Y., Qiu, X., & Huang, X. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. IEEE Access, 7, 121465-121473. https://doi.org/10.1109/ACCESS.2019.2932008
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing (pp. 79-86). https://doi.org/10.3115/1118693.1118704
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2019). Improving language understanding by generative pre-training. OpenAI. https://openai.com/research/language-unsupervised
Saha, S. K., Saha, S., & Ganguly, N. (2017). Sentiment analysis of social media data for business intelligence. Journal of Business Research, 77, 1-11. https://doi.org/10.1016/j.jbusres.2017.04.027
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., & Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 1631-1642). https://doi.org/10.3115/v1/D13-1170
Sun, L., Xu, L., & Du, M. (2020). Comparison of traditional machine learning algorithms and deep learning methods for sentiment analysis: A case study on Chinese public opinion. Computer Science and Information Systems, 17(1), 1-18. https://doi.org/10.2298/csis200103002s
Zhang, Y., Zhao, W. X., & LeCun, Y. (2021). A comprehensive survey on sentiment analysis: From feature engineering to deep learning. IEEE Transactions on Knowledge and Data Engineering, 33(10), 3604-3617. https://doi.org/10.1109/TKDE.2020.2967281
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Safayet Hossain, Md Tarake Siddique, Md Monir Hosen, Sakib Salam Jamee, Sharmin Akter, Pinky Akter, Md Omar Obaid, MD Sayem Khan

This work is licensed under a Creative Commons Attribution 4.0 International License.