BUSINESS ANALYTICS FOR CUSTOMER SEGMENTATION: A COMPARATIVE STUDY OF MACHINE LEARNING ALGORITHMS IN PERSONALIZED BANKING SERVICES
Md Amran Hossen Pabel , Master’s of Science in Business Analytics Wright State University, Ohio, USA Biswanath Bhattacharjee , Department of Management Science and Quantitative Methods, Gannon University, USA Sonjoy Kumar Dey , McComish Department of Electrical Engineering and Computer Science, South Dakota State University, USA Sakib Salam Jamee , Department of Management Information Systems, University of Pittsburgh, PA, USA Md Omar Obaid , Department of Business Analytics, California State Polytechnic University Pomona, CA, USA Md Sakib Mia , MSc in Business Analytics, Trine University, USA Sajidul Islam Khan , MSc in Business Analytics, Trine University, USA Mohammad Kawsur Sharif , Department of Business Administration and Management, Washington University of Virginia, USAAbstract
This study evaluates three machine learning clustering algorithms—K-Means, DBSCAN, and Hierarchical Clustering—for customer segmentation in the banking sector. Using a dataset of customer demographic, financial, and transactional data, we compare the algorithms based on the Silhouette score and Davies-Bouldin index. Hierarchical Clustering performed best, achieving the highest Silhouette score (0.68) and the lowest Davies-Bouldin index (1.15), indicating well-defined and compact clusters. K-Means showed reliable performance with a Silhouette score of 0.62 but required predefined clusters. DBSCAN identified noise effectively but resulted in lower cluster compactness, with a Silhouette score of 0.55 and a Davies-Bouldin index of 1.50. The findings highlight Hierarchical Clustering as the most effective method for customer segmentation in banking, with flexibility depending on the data and objectives.
Keywords
Customer segmentation, machine learning, K-Means, DBSCAN
References
Berson, A., Smith, S. J., & Thearling, S. (2018). Building data mining applications for CRM. McGraw-Hill.
Chen, Y., & Huang, T. (2013). Customer segmentation based on their behaviors and transaction data. Proceedings of the International Conference on Information Management and Technology, 230-234.
Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 226-231.
Everitt, B. S. (2011). Cluster analysis (5th ed.). Wiley.
Geurts, P., Wehenkel, L., & Raedt, L. D. (2006). Supervised learning: A review. IEEE Transactions on Knowledge and Data Engineering, 18(1), 19-26.
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666.
Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.
Kaur, H., Singh, S., & Arora, A. (2017). K-means clustering approach: A review of applications. International Journal of Computer Applications, 164(9), 36-40.
Li, S., & Li, X. (2020). Machine learning-based customer segmentation in banking: A review and comparison. Journal of Finance and Data Science, 6(4), 217-225.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281-297.
Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (1998). Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2(2), 169-194.
Xie, J., Li, L., & Li, J. (2018). Deep learning for customer segmentation in banking: An overview. International Journal of Computer Science and Network Security, 18(4), 86-94.
Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04
Naznin, R., Sarkar, M. A. I., Asaduzzaman, M., Akter, S., Mou, S. N., Miah, M. R., ... & Sajal, A. (2024). ENHANCING SMALL BUSINESS MANAGEMENT THROUGH MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS FOR CUSTOMER RETENTION, FINANCIAL FORECASTING, AND INVENTORY OPTIMIZATION. International Interdisciplinary Business Economics Advancement Journal, 5(11), 21-32.
Nguyen, A. T. P., Jewel, R. M., & Akter, A. (2025). Comparative Analysis of Machine Learning Models for Automated Skin Cancer Detection: Advancements in Diagnostic Accuracy and AI Integration. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 15-26.
Nguyen, A. T. P., Shak, M. S., & Al-Imran, M. (2024). ADVANCING EARLY SKIN CANCER DETECTION: A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR MELANOMA DIAGNOSIS USING DERMOSCOPIC IMAGES. International Journal of Medical Science and Public Health Research, 5(12), 119-133.
Phan, H. T. N., & Akter, A. (2025). Predicting the Effectiveness of Laser Therapy in Periodontal Diseases Using Machine Learning Models. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 27-37.
Phan, H. T. N. (2024). EARLY DETECTION OF ORAL DISEASES USING MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS AND DIAGNOSTIC ACCURACY. International Journal of Medical Science and Public Health Research, 5(12), 107-118.
Al Mamun, A., Hossain, M. S., Rishad, S. S. I., Rahman, M. M., Shakil, F., Choudhury, M. Z. M. E., ... & Sultana, S. (2024). MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 63-76.
Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.
Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.
Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.
Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Taluckder, M. S., Al Bony, M. N. V., ... & Jui, A. H. (2024). PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY. International Journal of Medical Science and Public Health Research, 5(11), 41-55.
Uddin, A., Pabel, M. A. H., Alam, M. I., KAMRUZZAMAN, F., Haque, M. S. U., Hosen, M. M., ... & Ghosh, S. K. (2025). Advancing Financial Risk Prediction and Portfolio Optimization Using Machine Learning Techniques. The American Journal of Management and Economics Innovations, 7(01), 5-20.
Ahmed, M. P., Das, A. C., Akter, P., Mou, S. N., Tisha, S. A., Shakil, F., ... & Ahmed, A. (2024). HARNESSING MACHINE LEARNING MODELS FOR ACCURATE CUSTOMER LIFETIME VALUE PREDICTION: A COMPARATIVE STUDY IN MODERN BUSINESS ANALYTICS. American Research Index Library, 06-22.
Md Risalat Hossain Ontor, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo, & Ashequr Rahman. (2024). LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS’ PERFORMANCE: A MACHINE LEARNING APPROACH. International Journal of Computer Science & Information System, 9(11), 45–56. https://doi.org/10.55640/ijcsis/Volume09Issue11-05
Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.
Iqbal, A., Ahmed, E., Rahman, A., & Ontor, M. R. H. (2024). ENHANCING FRAUD DETECTION AND ANOMALY DETECTION IN RETAIL BANKING USING GENERATIVE AI AND MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 78-91.
Nguyen, Q. G., Nguyen, L. H., Hosen, M. M., Rasel, M., Shorna, J. F., Mia, M. S., & Khan, S. I. (2025). Enhancing Credit Risk Management with Machine Learning: A Comparative Study of Predictive Models for Credit Default Prediction. The American Journal of Applied sciences, 7(01), 21-30.
Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.
Kuncheva, L. I. (2004). Combining pattern classifiers: Methods and algorithms. Wiley-Interscience.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281-297.
Xie, J., Li, L., & Li, J. (2018). Deep learning for customer segmentation in banking: An overview. International Journal of Computer Science and Network Security, 18(4), 86-94.
Nath, F., Chowdhury, M. O. S., & Rhaman, M. M. (2023). Navigating produced water sustainability in the oil and gas sector: A Critical review of reuse challenges, treatment technologies, and prospects ahead. Water, 15(23), 4088.
Chowdhury, O. S., & Baksh, A. A. (2017). IMPACT OF OIL SPILLAGE ON AGRICULTURAL PRODUCTION. Journal of Nature Science & Sustainable Technology, 11(2).
Nath, F., Asish, S., Debi, H. R., Chowdhury, M. O. S., Zamora, Z. J., & Muñoz, S. (2023, August). Predicting hydrocarbon production behavior in heterogeneous reservoir utilizing deep learning models. In Unconventional Resources Technology Conference, 13–15 June 2023 (pp. 506-521). Unconventional Resources Technology Conference (URTeC).
Article Statistics
Downloads
Copyright License
Copyright (c) 2025 Md Amran Hossen Pabel, Biswanath Bhattacharjee, Sonjoy Kumar Dey, Sakib Salam Jamee, Md Omar Obaid, Md Sakib Mia, Sajidul Islam Khan, Mohammad Kawsur Sharif

This work is licensed under a Creative Commons Attribution 4.0 International License.